

International H-Series Compressed Air & Gas Filters

- Coalescing, Particulate & Hydrocarbon Adsorption
- Flows from 10 to 1600 SCFM (17 to 2822 m³/hr)
- 1/4" to 3" NPT, BSPF & BSPT Ports

Bulletin 1300 - 993C/USA

Do you have... product rejects? Increased maintenance expense?

Contaminants from your compressor going into point of use applications?

Why filter compressed air and gas?

Submicronic contaminants in compressed air systems plug orifices of sensitive pneumatic instrumentation, wear out seals, erode system components, reduce the absorptive capacity of desiccant air/gas dehydrators, foul heat transfer surfaces, reduce air tool efficiency, and damage finished

products. The results include product rejects, lost production time and increased maintenance expense. For example, trace amounts of submicronic oil can cause serious fish eye blemishing in automotive finishing operations. Water left in air lines can freeze during exposure to cold temperatures, blocking flow or rupturing pipes. Compressor lubricant not captured in a coalescing filter will eventually collect in pneumatic components, causing premature component repair or replacement. Environmental concerns will be raised if oily, compressed air is continually discharged into the atmosphere

Why use Finite Filters?

SAVE TIME AND MONEY

Finite Filter's International H-Series is the right solution for most compressed air/gas applications. Our filter elements are formed with our special UNI-CAST glass microfibers to enhance the depth-loading characteristics of each element's fiber matrix. This design provides lower pressure drops and less frequent change outs, saving you time and money.

WE MEET YOUR NEEDS

With our wide variety of media, you can find a product to meet your specific requirements. This will avoid over-specifying filtration efficiency.

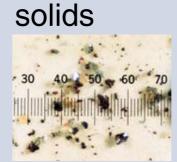
IMPROVE OPERATION LIFE

We make liberal use of a special prefilter, prolonging operation life on some coalescers from 4 to 6 times.

CONFIDENCE IN PERFORMANCE

Our filter housings have been specifically designed for coalescing filtration. Generous exit ports promote lower pressure drops and large remote sump areas prevent fluid re-entrainment. With Finite's H-Series product line, you can have confidence in performance.

Finite's H-Series Offers...


- Coalescing, particulate and adsorption filter elements
- Optional indicators, gauges and drains
- Temperatures to 450° F (232° C)
- Pressures to 500 PSIG (34 bar)
- Connection sizes from 1/4" to 3" NPT, BSPF & BSPT
- Flows from 10 to 1600 SCFM (17-2822 m³/hr)

water

oil

Actual pictomicroraph of particulate contaminants (Magnified 100x Scale: 1 division = 20 microns (μm))

The contaminants of greatest concern in precision compressed air systems are water, oil and solids. Water vapor is present in all compressed air; it becomes greatly concentrated by the compression process. While air dryer systems can be used effectively to remove water from compressed air, they will not remove the second major liquid contaminant – oil. Most oil comes from compressor lubrication carry-over, but even the air produced by oil-free compressors has hydrocarbon contamination brought into the system through the intake.

The third contaminant found in compressed air is solid matter including dirt, rust and scale. Solid particulates, combined with aerosols of water and oil, can clog and shorten the life of air system components and can foul processes.

Typical Applications (See Pages 5-6 for application and air

cleanliness schematics)

Coalescing (Oil Removal)

- Air dryer prefilter
- Paint spray booths
- Breathing air
- Tool protection
- Air valve protection
- Air cylinder protection
- Compressed air system protection

Adsorber (Vapor Removal)

- Odor removal
- Breathing air
- Food packaging equipment
- High purity laboratory gases
- Hydrocarbon vapor removal

Interceptor (Particulate Removal)

- Desiccant dryer afterfilter
- Prefilter for coalescer
- Systems with high concentrations of solid contaminant
- Particulate protection for non-lubricated systems

Steps to clean, dry compressed air!

Determine your application, media grade, media type and end seals. Pages 4-7

Step **2**

Choose your housing and replacement elements. Pages 8-9

Choose your accessories. Find out what's standard or choose what's best for your application. Page 9

How to Order. Build your own part number here! Page 10

Parker

Parker Hannifin Corporation Finite Filter Operation Oxford, MI

Does one of these applications describe your system?

From aeration in pharmaceutical and chemical processes to pneumatic power systems, the possibilities for applications are endless. Finite has some suggested air cleanliness standards that may fit your needs. Let one of Finite's application engineers find a system that is right for you.

quality

International Standard ISO8573-1 is fast becoming the industry standard method for specifying compressed air cleanliness. The following diagrams describe various systems in terms of their corresponding ISO classification.

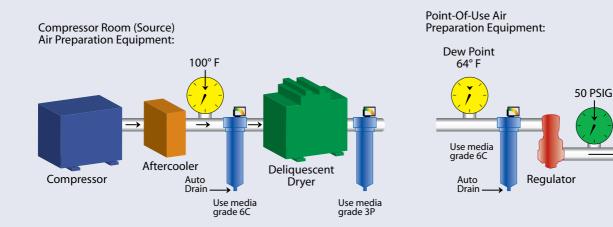
International ISO Standards Notification as specified in ISO8573 - 1

	S	Solid		w	ater	Oi	Oil		
Class	Maxi- mum particle size	Maximum Concentra- tion* ppm(mg/m ³)		Maximum Pressure Dewpoint °F (°C)		Maximum Concentra- tion** ppm(mg/m ³)			
1	0.1	0.08	(0.1)	-94	(-70)	0.008	(0.01)		
2	1	0.8	(1)	-40	(-40)	0.08	(0.1)		
3	5	4.2	(5)	-4	(-20)	0.83	(1)		
4	15	6.7	(8)	37	(+3)	4.2	(5)		
5	40	8.3	8.3 (10)		(+7)	21	(25)		
6	-	-	-	50	(+10)	-	-		

* At 14.7 psi (1 bar) absolute pressure, +70°F (+20°C) and a relative humidity of 60%. It should be noted that at pressures above atmospheric, the contaminant concentration is higher.

The quality of the air delivered by non-lubricated compressors is influenced by the ality of the intake air and the compressor design.

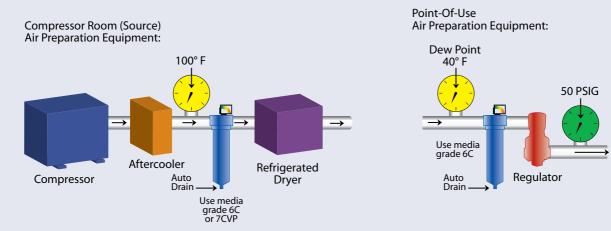
Any compressor with aftercooler. Air intended for use with lubricated air tools, air motors, cylinders, shot blasting, non-frictional valves. OTHER SPECS MET: Compressed Air & Gas Institute: CGA – G7.1 (Grades A & Ba1)


ISO Class 1 1

Any compressor with aftercooler and 2-stage coalescing. Air intended for use with lubricated control valves, cylinders and parts blow-down, etc.

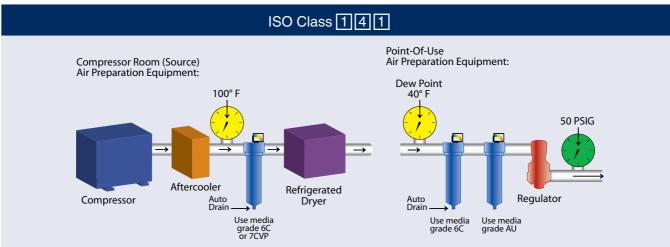
OTHER SPECS MET: Mil. Std. 282 H.E.P.A., U.S.P.H.S. 3A Accepted particles for milk

ISO Class 1 1



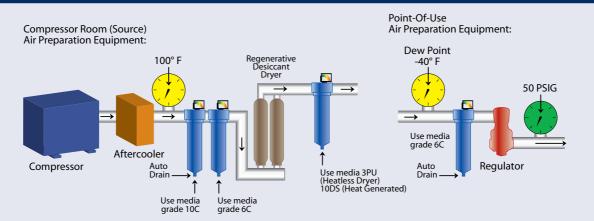
Any compressor with aftercooler, 2-stage coalescing and deliquescent dryer. Air intended for use with general pneumatic systems, body shop spray painting and components sensitive to high moisture content.

OTHER SPECS MET: Compressed Air & Gas Institute: CGA - G7.1 (Grade C)



ISO Class 141

Any compressor with aftercooler, 2-stage coalescing and refrigerated dryer. Air intended for use with air-gauging, air conveyors, spray-painting, food processing, instrumentation, blow molding, cosmetics, film processing, bottling, pharmaceuticals, dairy, breweries, medical, robotics and close tolerance valves.


SPECS MET: CGA - G7.1 (Grades D & E), ISAS7.3 Fed. Std. 209 (Class 100)

Any compressor with aftercooler, 2-stage coalescing, refrigerated dryer and carbon absorber. Air intended for use as industrial breathing air and decompression chambers. CAUTION: Always use high temperature synthetic lubricants and monitor (alarm for carbon monoxide concentrations exceeding 20ppm). This system will not eliminate toxic gases!

OTHER SPECS MET: O.S.H.A. 29CFR 1910.134

ISO Class 121

Any compressor with aftercooler, two-stage and double coalescing and a regenerative-type desiccant dryer. Air intended for use in applications involving rapid expansion of compressed air, critical instrumentation, high purity gases, computer chip drying, etc. CAUTION: This air is too dry for respiratory use.

SPECS MET: CGA - G7.1 (Grade F)

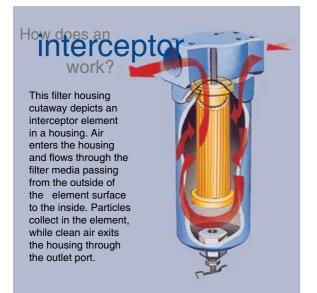
Determine your application, media grade, media type and end seals.

Find your (or similar) application in the descriptions below, from the basic application circuits on the previous page, or consult a **Finite**[®] application engineer. Determine media grade, media type and end seal required. If your application requires a coalescing element, use the information listed below. For other media types, please see the following page.

Coalescing (Liquid and Particulate Removal) Filter Media

This filter housing cutaway depicts the coalescing process. Air enters the housing and flows through the filter media passing from the		₽ Media Grade ←	APPLICA elevated removing of pneum	ATIONS: Very P pressures up to aerosols from I atic systems an low and tempera	printed on the nigh-efficiency 500 PSIG (3 ighter weight d critical mod	y coalescer; 4 bar) or wh gases. Pro dulating sys	; for nen otection
inside element surface the outside. Coalesced liquid (water and oil) collects in the bowl whe it is drained and clean a exits the housing throug	to vre uir		when tota fines is re dryers, a	ATIONS: General removal of liqued equired in all pre- ir gauging, air logy ying, most brea	uid aerosols a essure ranges ogic, modulat	and suspend B. Protectic ing systems	ded on of air
the outlet port. Particula contaminants are captured and held in the media.		י 7C\	/P drop, eve pleated c efficiency life and a	ATIONS: High e n when wetted l oalescing media applications. L high tolerance f refilter for refrige	by oil and wa a an excellen arge surface for heavy liqu	ter, makes t choice for area mean iid aerosol c	this medium s long
All of the elements belo	Ir a type	8	bination v Protection	TIONS: Good vith high flow ra n of noncritical o /linders, etc. Pre	te and long e circuit compo	lement life. nents such	as
	C: Micro-glass coalescer	10 🗌	to remove aerosols	TIONS: Preco e gross amounts which are difficu ulate equipment re drop.	s of water and It to remove.	d oil, or tena Upgrading	acious J exist-
	Max. temp. 175°F.	Media Sp	pecification	IS			
	Max. temp. 175°F. Q: Micro-glass	Grade Designation	Coalescing Efficiency .3 to .6 Micron	Aximum Oil Carryover ¹ PPM w/w	Micron Rating		Drop (PSID) ted Flow ² Media
	Max. temp. 175°F. Q: Micro-glass coalescer with built-in	Grade	Coalescing Efficiency	Maximum Oil Carryover ¹		@ Rat	ted Flow ²
	Max. temp. 175°F. Q: Micro-glass	Grade Designation 4	Coalescing Efficiency .3 to .6 Micron Particles 99.995%	Maximum Oil Carryover' PPM w/w	Rating 0.01	@ Rat	Media Wet With 10-20 wt. oil 3-4
	Max. temp. 175°F. Q: Micro-glass coalescer with built-in pleated prefilter	Grade Designation 4 6	Coalescing Efficiency .3 to .6 Micron Particles 99.995% 99.97%	Maximum Oil Carryover ¹ PPM w/w 0.003 0.008	Rating 0.01 0.01	@ Rat Media Dry 1.25 1.0	Media Wet With 10-20 wt. oil 3-4 2-3
	Max. temp. 175°F. Q: Micro-glass coalescer with built-in pleated prefilter	Grade Designation 4 6 7	Coalescing Efficiency .3 to .6 Micron Particles 99.995% 99.97% 99.5%	Maximum Oil Carryover ¹ PPM w/w 0.003 0.008 0.09	Rating 0.01 0.01 0.5	@ Rat Media Dry 1.25 1.0 0.25	ted Flow ² Media Wet With 10-20 wt. oil 3-4 2-3 0.5 - 0.7
	Max. temp. 175°F. Q: Micro-glass coalescer with built-in pleated prefilter Max. temp. 175°F.	Grade Designation 4 6	Coalescing Efficiency .3 to .6 Micron Particles 99.995% 99.97%	Maximum Oil Carryover' PPM w/w 0.003 0.008 0.09 0.2	Rating 0.01 0.01 0.5 0.5	@ Rat Media Dry 1.25 1.0	Media Wet With 10-20 wt. oil 3-4 2-3
	Max. temp. 175°F. Q: Micro-glass coalescer with built-in pleated prefilter	Grade Designation 4 6 7 8 10 ¹ Tested per ADI ² Add dry + wet f Coalesco Blank: No en Stand U: Molde S: Molde eleme V: Fluoro for hig	Coalescing Efficiency .3 to .6 Micron Particles 99.995% 99.97% 99.5% 98.5%	Maximum Oil Carryover' PPM w/w 0.003 0.008 0.09 0.2 0.85 et. op. Is: ts are self-sealir 1/4" to 1" conne dard on all filters end seals used 232°C). onded to metal 6 60°F (232°C) ele	Rating 0.01 0.01 0.5 0.5 1.0 ng. ection sizes. s with 1 1/4" to for high-temp end cap. Option ments. Availa	e Rat Media Dry 1.25 1.0 0.25 0.5 0.5 0.5 o.s	tion sizes.

Oxford, MI


Water Separator Filter Media

Grade Designation	Filter Efficiency Rating	Pressure Drop (PSID) @ Rated Flow Media Dry
100WS	100 µm	<0.25

Water Separator End Seals:

- Blank: Fluorocarbon gasket bonded to metal end cap. Standard on filters with 1 1/4" to 3" connection sizes.
- U: Molded urethane. Standard on all filters with 1/4" to 1" connection sizes.

Interceptor (Particulate Removal) Filter Media

Adsorption (Vapor Removal)

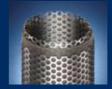
Filter Media

This filter housing

cutaway depicts the adsorption process. Air enters the housing

and flows through the filter media passing from the outside element surface to the inside. Hydrocarbon vapors collect in the

filter element. while


clean air exits the housing through the

How doe

100WS

APPLICATIONS: Reduction and elimination of excess liquids in gas streams. Excellent prefiltration for coalescing grades 6 and 10 when extreme quantities of liquid contaminants are present.

media type

100WS: Rolled Stainless Steel Mesh (304 SS)

Element flows in to out. Max. temp. 175°F.

APPLICATIONS: Particulate removal where very high dirt-holding capacity is required. Safety afterfilter for desiccant dryer, pore matched prefilter for coalescer or as general use for final instrument air protection.

Media Specifications

Grade Designation	Filter Efficiency Rating	Pressure Drop (PSID) @ Rated Flow Media Dry
3P	3 μm	0.25

media type

Standard Interceptor End Seals: U = Molded urethane. Molded silicone rubber (S) and fluorocarbon (V) available - see How to Order on page 10.

APPLICATIONS: Polishing gas stream of final trace amounts of hydrocarbon contaminants, usually 0.5 to 2 ppm inlet concentrations. Preparation for breathing air; hydrocarbon vapor removal.

Media Specifications Grade Oil Vapor Pressure Drop (PSID) @ Rated Flow Designation Removal Efficiency Dry Dry A 99%+ 1

Standard Adsorber End Seals: U = Molded urethane. Molded silicone rubber (S) available - see How to Order on page 10.

outlet port.

Determine your Housing.

Find your desired flow rate under the appropriate media grade column. For pressures other than 100 PSIG or temperatures other than 70°F, please see Alternate Housing Selection Chart, Step 2a, on following page.

_Insert Port Type. See page 10 for options. For example: Insert "N" for an NPT Port.

Housing Selection Chart

		_		ares, pieuse c			51-5-		
Housing Assembly	Port Size	Grade 4 Coalescer	Grade 6 Coalescer (Standard)	Grade 7CVP Coalescer	Grade 8 Coalescer	Grade 10 Coalescer	Grade 3PU Interceptor	Grade 100WS Water Separator	Grade A Adsorber
H_1S	1/4"	11 (19)	15 (26)	N/A	20 (34)	25 (43)	25 (43)	50 (85)	15 (26)
H_15S	3/8"	15 (26)	20 (34)	N/A	27 (46)	33 (56)	33 (56)	66 (112)	20 (34)
H_2S	1/2"	19 (32)	25 (43)	N/A	34 (58)	42 (71)	42 (71)	83 (141)	25 (43)
H_1L	1/4"	23 (39)	30 (51)	N/A	41 (68)	50 (85)	50 (85)	50 (85)	30 (51)
H_15L	3/8"	30 (51)	40 (68)	N/A	55 (94)	66 (112)	66 (112)	66 (112)	40 (68)
H_2L	1/2"	38 (65)	50 (85)	N/A	68 (116)	83 (141)	83 (141)	83 (141)	50 (85)
H_3S	3/4"	61 (104)	80 (136)	N/A	109 (185)	133 (226)	133 (226)	133 (226)	80 (136)
H_4S	1"	76 (129)	100 (170)	N/A	136 (231)	166 (282)	166 (282)	232 (394)	100 (170)
H_4L	1"	106 (180)	140 (238)	N/A	191 (325)	232 (394)	232 (394)	232 (394)	140 (238)
H_5S	1 1/4"	190 (323)	250 (425)	415 (706)	330 (461)	415 (706)	415 (706)	415 (706)	250 (425)
H_6S	1 1/2"	260 (442)	350 (595)	600 (1020)	465 (791)	600 (1020)	600 (1020)	600 (1020)	350 (595)
H_8E	2"	260 (442)	350 (595)	600 (1020)	465 (791)	600 (1020)	600 (1020)	600 (1020)	350 (595)
H_8S	2"	340 (578)	450 (765)	750 (1275)	600 (1020)	750 (1275)	750 (1275)	750 (1275)	450 (765)
H_8L	2"	470 (799)	625 (1063)	1035 (1760)	830 (1411)	1035 (1760)	1035 (1760)	1035 (1760)	625 (1063)
H_0L	2 1/2"	600 (1020)	800 (1360)	1330 (2261)	1060 (1802)	1330 (2261)	1330 (2261)	1330 (2261)	800 (1360)
H_12L	3"	750 (1275)	1000 (1700)	1660 (2822)	1330 (2261)	1660 (2822)	1660 (2822)	1660 (2822)	1000 (1700)

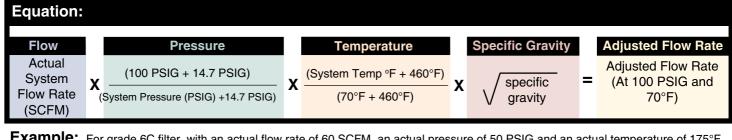
Rated Flows: SCFM @ 100 PSIG (m³/hr @ 7 bar) For other pressures, please see Step 2a on following page.

Replacement Element Part Numbers

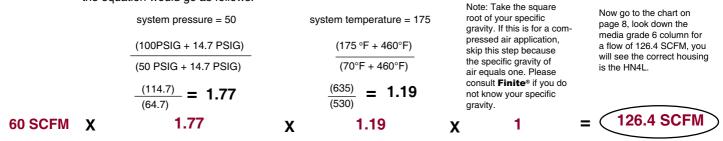
_Insert Port Type. Port type does not affect element selection.

*Insert selected media grade 4, 6, 8, 10.

Housing Assembly	Coalescer	Coalescer w/inner retainer	High Temperature	Coalescer w/ built-in prefilter	7CVP Pleated Coalescer	3PU Interceptor	100WS Water Separator	AU Adsorber
H_1S	*C10-025	*IU10-025	*DS10-025	*QU10-025	N/A	3PU10-025	100WSU10-025	AU10-025
H_15S	*C10-025	*IU10-025	*DS10-025	*QU10-025	N/A	3PU10-025	100WSU10-025	AU10-025
H_2S	*C10-025	*IU10-025	*DS10-025	*QU10-025	N/A	3PU10-025	100WSU10-025	AU10-025
H_1L	*C10-050	*IU10-050	*DS10-050	*QU10-050	N/A	3PU10-050	100WSU10-025	AU10-050
H_15L	*C10-050	*IU10-050	*DS10-050	*QU10-050	N/A	3PU10-050	100WSU10-025	AU10-050
H_2L	*C10-050	*IU10-050	*DS10-050	*QU10-050	N/A	3PU10-050	100WSU10-025	AU10-050
H_3S	*C15-060	*IU15-060	*DS15-060	*QU15-060	N/A	3PU15-060	100WSU15-060	AU15-060
H_4S	*C15-060	*IU15-060	*DS15-060	*QU15-060	N/A	3PU15-060	100WSU15-060	AU15-060
H_4L	*C15-095	*IU15-095	*DS15-095	*QU15-095	N/A	3PU15-095	100WSU15-060	AU15-095
H_5S	*CU25-130	*CU25-130	*DS25-130	*QU25-130	7CVP25-130	3PU25-130	100WS25-130	AU25-130
H_6S	*CU25-130	*CU25-130	*DS25-130	*QU25-130	7CVP25-130	3PU25-130	100WS25-130	AU25-130
H_8E	*CU25-130	*CU25-130	*DS25-130	*QU25-130	7CVP25-130	3PU25-130	100WS25-130	AU25-130
H_8S	*CU25-187	*CU25-187	*DS25-187	*QU25-187	7CVP25-187	3PU25-187	100WS25-187	AU25-187
H_8L	*CU25-235	*CU25-235	*DS25-235	*QU25-235	7CVP25-235	3PU25-235	100WS25-235	AU25-235
H_0L	*CU35-280	*CU35-280	*DS35-280	*QU35-280	7CVP35-280	3PU35-280	100WS35-280	AU35-280
H_12L	*CU35-280	*CU35-280	*DS35-280	*QU35-280	7CVP35-280	3PU35-280	100WS35-280	AU35-280



Alternate Housing Selection Chart


for applications with pressures other than 100 PSIG and 70°F (standard conditions)

Converting Actual Application Conditions to Standardized Conditions

Because the required size of a filter is affected not only by flow, but also by operating pressure and operating temperature, it is necessary to convert those actual conditions to standardized conditions (100 PSIG and 70°F). The calculated adjusted flow rate can then be used to choose the appropriate filter in the chart on page 8. When using the chart, choose the closest flow rate from the appropriate media grade column.

Example: For grade 6C filter, with an actual flow rate of 60 SCFM, an actual pressure of 50 PSIG and an actual temperature of 175°F, the equation would go as follows:

Pre-Installed Accessory Options

Step **2**

	Accessory		DPI	DPG	High	DP	Fluorocarbon	No	Pressu	re/Temp	Pres	sure/Temp
	Designator	Auto Drain	Indicator	Gauge	Temp	Ports	O-rings	Accessories	PSIG	Degrees°F	bar	Degrees°C
	Α								250	175°	17	79°
	D								250	175°	17	79°
Step 🕖	G								500	175°	34	79°
	J								250	450°	17	232°
Chassesware	Ν								500	175°	34	79°
Choose your	Р								250	175°	17	79°
accessories.	V								500	175°	34	79°
Consult Finite[®] when choosing	W								250	175°	17	79°
pre-installed	Х								250	175°	17	79°
accessories for special gases.	Y								250	175°	17	79°

Pre-installed Accessories

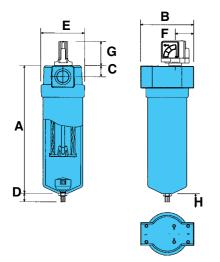
Other Compatible Accessories

		9					Ŷ
	DPI Indicator	AD-12 ¹ Automatic Drain Valve (Internal)	DPG-15 Differential Pressure Gauge	TV-50 ² Timed Drain Valve	ZLD-10 Zero Loss Drain	VS-50 Visual Sump Drain (not shown: stan-	MS-50 Metal Sump Drain (External)
Designator	D, W	A, W, X, Y	G, Y			dard bowl guard)	
Temp.	175° F (79° C)	175° F (79° C)	175° F (79° C)	210° F (99° C)	140° F (60° C)	125° F (52° C)	175° F (79° C)
Pressure	250 PSIG	250 PSIG	500 PSIG	300 PSIG	250 PSIG	150 PSIG	250 PSIG
	(17 Bar)	(17 Bar)	(34 Bar)	(20 Bar)	(17 Bar)	(10 Bar)	(17 Bar)
Port Size	N/A	N/A	N/A	1/2" NPT	1/2" NPT	1/2" NPT	1/2" NPT

¹Note: AD-12 requires 10 PSIG to seal. ²Note: Other timed drain valves can in Bulletin 1300-150/USA. Mounting brackets available: BK-M (1/4" - 1/2" connections); BK-3 (3/4" - 1" connections).

Step 4 How to Order

Use the steps below to build your own part number. For any permutation not mentioned below, please consult factory at 1-800-521-4357.

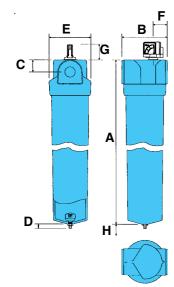

	Step	2 or 2a			S	Step 1		Step 3
H Series Name	Ν	$\begin{array}{c c} 1 & 2 \\ \hline Port (Connection) \\ Size \\ \hline 1 - 1/4" \\ 15 - 3/8" \\ 2 - 1/2" \\ 3 - 3/4" \\ 4 - 1" \\ 5 - 1 1/4" \\ 5 - 1 1/4" \\ 6 - 1 1/2" \\ 8 - 2" \\ 0 - 2 1/2" \\ 12 - 3" \end{array}$	Bowl S - Standard L - Long E - Economy (short bowl)* *Short bowl is only available on 2" connection size Note: Bowl length is determined by the flow rate required. See	6 Element Grade 4 6 8 10	C Element Type C	End S Blank = U = S =	No end seal, Standard on 1/4" to 1" connection sizes Urethane, Standard on 1 1/4" to 3" connection sizes Molded Silicone Rubber	Accessory Designatorfor preinstalled accessoriesA - Auto DrainD - DPI IndicatorG - DPG Gauge (Standard on 3/4" & up)J - High Temperature (450°F)N - No AccessoriesP - 1/8" Differential (3/4" & up) Sensing PortsV - Fluorocarbon O-ringsW - A + D X - A + P Y - A + G
			page 8, Housing Selection Chart, for flow rates.		Q		Urethane, Standard all connection sizes Molded Silicone Rubber Fluorocarbon, Available 1 1/4" to 3" connections only	Note: For max. pressures and temperatures related to Accessories , please see chart on previous page.
					D	S = V =	Molded Silicone Rubber, Star Fluorocarbon, Available 1 1/4	
				70	VP	Blank =	Fluorocarbon, Standard on al elements available 1 1/4" to 3	
					I	U =	Urethane, Standard on 1/4" to	o 1" connection sizes
					3P	U = S = V =	Urethane, Standard on all cor Molded Silicone Rubber Fluorocarbon, Available 1 1/4	
				100	ws		Urethane, Standard on 1/4" to Fluorocarbon, Standard on 10 1 1/4" to 3" connections only	
					А	U = S =	Urethane, Standard on all cor Molded Silicone Rubber	nnection sizes

Examples on How to Order

Example 1:	Example 2:	Example 3:	Example 4:	Example 5:
HN12L-6CUY	HN15L-8CA	HN8S-7CVPG	HN8E-10DVJ	HN2S -AUN
What am I ordering? An H-Series, with a 3" NPT connection, long bowl, standard grade 6 coalescing element with urethane end seals, an auto drain and a standard DPG gauge.	What am I ordering? An H-Series, with a 3/8" NPT connection, long bowl, grade 8 coalescing element without end seals and an auto drain.	What am I ordering? An H-Series, with a 2" NPT connection, standard bowl, a 7CVP coalescing element, with the standard fluorocarbon end seals and standard DPG gauge.	What am I ordering? An H-Series, with a 2" NPT connection, economy short bowl, grade 10 high-temp coalescing element, with the standard fluorocarbon end seals and "J" as an accessory. This high temperature option converts all materials to be capable of handling temperatures of 450°F.	What am I ordering? An H-Series, with a 1/2" NPT connection, short bowl, adsorber element, with the standard urethane end seals and no accessories.

Drawings, Dimensions & Specifications

1/4" to 1" Housings


Specifications

Max. Pressure: **500 PSIG** (34 bar) Safety Factor: Max. operating to burst 4:1 Max. Temp.: **175°F** (79°C) with option to **450°F** (232°C) Seals: Nitrile Std./Fluorocarbon optional Materials: Aluminum - 380 Die cast heads; 6061 Drawn bowls Coatings: Chromated heads and bowls; Powder painted exterior

Design: In-line threaded bowl to head

Note: Manual Drain Port is 1/8" FNPT when tee valve is removed from drain bushing.

Model	Α	В	С	D	E	F	G	H*	Sump (ml)	Weight
H_1S	6.80 (172)	3.12 (79)	. <mark>63</mark> (16)	. 79 (20)	2.98 (76)	1.56 (39.5)	2.6 (66)	2.99 (76)	150	1.49 (.68)
H_15S	6.80 (172)	3.12 (79)	. <mark>63</mark> (16)	. <mark>79</mark> (20)	2.98 (76)	1.56 (39.5)	2.6 (66)	2.99 (76)	150	1.47 (.66)
H_2S	6.80 (172)	3.12 (79)	. <mark>63</mark> (16)	. <mark>79</mark> (20)	2.98 (76)	1.56 (39.5)	2.6 (66)	2.99 (76)	150	1.44 (.65)
H_1L	9.19 (233)	3.12 (79)	. <mark>63</mark> (16)	. <mark>79</mark> (20)	2.98 (76)	1.56 (39.5)	2.6 (66)	5.51 (140)	140	1.89 (.86)
H_15L	9.19 (233)	3.12 (79)	. <mark>63</mark> (16)	. <mark>79</mark> (20)	2.98 (76)	1.56 (39.5)	2.6 (66)	5.51 (140)	140	1.87 (.85)
H_2L	9.19 (233)	3.12 (79)	. <mark>63</mark> (16)	. <mark>79</mark> (20)	2.98 (76)	1.56 (39.5)	2.6 (66)	5.51 (140)	140	1.85 (.84)
H_3S	10.86 (276)	4.65 (118)	.96 (24)	. <mark>79</mark> (20)	3.68 (93.5)	1.73 (44)	2.6 (66)	6.5 (165)	270	3.56 (1.61)
H_4S	10.86 (276)	4.65 (118)	.96 (24)	. <mark>79</mark> (20)	3.68 (93.5)	1.73 (44)	2.6 (66)	6.5 (165)	270	3.29 (1.49)
H_4L	14.36 (365)	4.65 (118)	. <mark>96</mark> (24)	. 79 (20)	3.68 (93.5)	1.73 (44)	2.6 (66)	10.00 (254)	270	4.11 (1.86)
Special Note:	Dimensions are	in inches (milli	meters); wei	ght is in <mark>pou</mark>	nds (kilograms	s).				
* Clearance re	equired to remov	e bowl.								

1 1/4" to 3" Housings

Specifications

Max. Pressure: 500 PSIG (34 bar) Safety Factor: Max. operating to burst 4:1 Max. Temp.: 175°F (79°C) with option to 450°F (232°C) Seals: Nitrile Std./Fluorocarbon optional Materials: Aluminum - 356 Sand cast heads; 6061 Drawn bowls Coatings: Chromated heads and bowls; Powder painted exterior Design: In-line threaded bowl to head

Note: Manual Drain Port is 1/8" FNPT when tee valve is removed from drain bushing.

Model	A	В	С	D	E	F	G	H*	Sump (ml)	Weight
H_5S	18.23 (463)	6.0 (152)	1.65 (42)	. <mark>83</mark> (21)	5.67 (144)	1.85 (47)	2.6 (66)	13.50 (343)	440	12.11 (5.49)
H_6S	18.23 (463)	6.0 (152)	1.65 (42)	. <mark>83</mark> (21)	5.67 (144)	1.85 (47)	2.6 (66)	13.50 (343)	440	11.97 (5.43)
H_8E	18.23 (463)	6.0 (152)	1.65 (42)	. <mark>83</mark> (21)	5.67 (144)	1.85 (47)	2.6 (66)	13.50 (343)	440	11.97 (5.43)
H_8S	24.23 (617)	6.0 (152)	1.65 (42)	. <mark>83</mark> (21)	5.67 (144)	1.85 (47)	2.6 (66)	19.25 (489)	530	14.00 (6.35)
H_8L	29.23 (742)	6.0 (152)	1.65 (42)	. <mark>83</mark> (21)	5.67 (144)	1.85 (47)	2.6 (66)	24.02 (610)	620	15.99 (7.25)
H_0L	35.70 (907)	8.0 (203)	2.4 (61)	. <mark>83</mark> (21)	7.24 (184)	2.36 (60)	2.6 (66)	28.50 (724)	880	35.00 (15.87)
H_12L	35.70 (907)	8.0 (203)	2.4 (61)	. <mark>83</mark> (21)	7.24 (184)	2.36 (60)	2.6 (66)	28.50 (724)	880	34.14 (15.48)
Special Note:	Dimensions are i	in <mark>inches</mark> (mil	limeters); weig	ht is in <mark>poun</mark>	ds (kilograms).					
* Clearance required to remove bowl.										

Parker Hannifin Corporation Finite Filter Operation Oxford, MI